On some metabelian 2-group and applications II

Abdelmalek Azizi, Abdelkader Zekhnini and Mohammed Taous

ABSTRACT: Let G be some metabelian 2-group such that $G/G' \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem of the 2-ideal classes of some fields k satisfying the condition $\text{Gal}(k_{2}^{(2)}/k) \cong G$, where $k_{2}^{(2)}$ is the second Hilbert 2-class field of k.

Key Words: 2-group, metabelian 2-group, capitulation, Hilbert class fields.

Contents

1 Introduction 75
2 Main Results 76
3 Applications 82
4 Example 83

1. Introduction

Let k be an algebraic number field and let $\text{Cl}(k)$ denote its class group. Let $k^{(1)}$ be the Hilbert class field of k, that is the maximal abelian unramified extension of k. Let $k^{(2)}$ be the Hilbert class field of $k^{(1)}$ and put $G = \text{Gal}(k^{(2)}/k)$. Denote by F a finite extension of k and by H the subgroup of G which fixes F, then we say that an ideal class of k capitulates in F if it is in $\ker j_{k \rightarrow F}$, the kernel of the homomorphism:

$$j_{k \rightarrow F} : \text{Cl}(k) \longrightarrow \text{Cl}(F)$$

induced by extension of ideals from k to F. An important problem in Number Theory is to explicitly determine the kernel of $j_{k \rightarrow F}$, which is usually called the capitulation kernel. As $j_{k \rightarrow F}$ corresponds, by Artin reciprocity law, to the group theoretical transfer (for details see [14]):

$$V_{G \rightarrow H} : G/G' \longrightarrow H/H',$$

where G' (resp. H') is the derived group of G (resp. H). So, determining $\ker j_{k \rightarrow F}$ is equivalent to determine $\ker V_{G \rightarrow H}$, which transforms the capitulation problem to a problem of Group Theory. That is why the capitulation problem is completely solved if $G/G' \cong (2, 2)$, since groups G such that $G/G' \cong (2, 2)$ are determined and

2000 Mathematics Subject Classification: 11R11, 11R29, 11R32, 11R37

Typeset by BSPM style.
© Soc. Paran. de Mat.
well classified (see \cite{11,14}). If $G/G' \simeq (2, 2^n)$, for some integer $n \geq 2$, then G is metacyclic or not; in the first case the capitulation problem is completely solved, whereas in the second case the problem is open (see \cite{6,7}). If $G/G' \simeq (2, 2, 2)$, then the structure of G is unknown in most cases, so the capitulation problem is also style open, in reality there are some studies which dealt with this problem in particular cases; see \cite{1,2,3,9,10}. It is the purpose of this paper to provide answers to this problem in a particular case, it is the continuation of a project we started in \cite{4,5}; we give some group theoretical results to solve the capitulation problem, in a particular case, if G satisfies the last condition. For this, we consider the family of groups defined, for integers $n \geq 1$ and $m \geq 2$, as follows

$$G_{n,m} = \langle \sigma, \tau, \rho : \rho^4 = \tau^{2^{n+1}} = \sigma^{2^m} = 1, \rho^2 = \tau^{2^n} \sigma^{2^{m-1}}, [\tau, \sigma] = 1, [\rho, \sigma] = \sigma^2, [\rho, \tau] = \rho^2 \rangle$$

(1.1)

In this paper, we construct all the subgroups of $G_{n,m}$ of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map $V_{G\rightarrow H} : G_{n,m}/G_{n,m} \rightarrow H/H'$, for any subgroup H of $G_{n,m}$, defined by the Artin map. Then we apply these results to study the capitulation problem of the 2-ideal classes of some fields k satisfying the condition $\text{Gal}(k_2^{(2)}/k) \simeq G_{n,m}$, where $k_2^{(2)}$ is the second Hilbert 2-class field of k. Finally, we illustrate our results by some examples which show that our group is realizable i.e. there is a field k such that $\text{Gal}(k_2^{(2)}/k) \simeq G_{n,m}$.

2. Main Results

Recall first that a group G is said to be metabelian if its derived group G' is abelian, and a subgroup H of a group G, not reduced to an element, is called maximal if it is the unique subgroup of G distinct from G containing H.

Let $G_{n,m}$ be the group family defined by the Formula (1.1). Since $[\tau, \sigma] = 1$, $[\rho, \sigma] = \sigma^2$ and $[\rho, \tau] = \rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, so $G_{n,m} = \langle \sigma^2, \rho_2 \rangle = \langle \sigma^2, \tau^{2^n} \sigma^{2^{m-1}} \rangle = \langle \sigma^2, \tau^{2^n} \rangle$, which is abelian. Then $G_{n,m}$ is metabelian and $G_{n,m}/G_{n,m}' \simeq (2, 2, 2^n)$. Hence $G_{n,m}$ admits seven subgroups of index 2, denote them by $H_i,2$, and if $n = 1$ it admits also seven subgroups of index 4, we denote them by $H_i,4$, where $1 \leq i \leq 7$. These subgroups, their derived groups and the types of their abelianizations are given in Tables 1 and 2 below, where $b = \max(m, n + 1)$.

To check the Tables entries, we use the following lemmas.

Lemma 2.1 ([12], Proposition 5.1.5). Let x, y and z be elements of some group G, put $x^y = y^{-1}xy$. Then $[xy, z] = [x, z]^y[y, z]$ and $[x, yz] = [x, z][x, y]^z$.

Lemma 2.2. Let $G_{n,m} = \langle \sigma, \tau, \rho \rangle$ denote the group defined above, then

1. ρ^2 commutes with σ and τ.
2. $\rho^{-1} \sigma \rho = \sigma^{-1}$.
3. $\tau^{-1} \rho \tau = \rho^3$ and $\rho^{-1} \tau \rho = \tau \rho^2$.

A. Azizi, A. Zekhnini and M. Taous
Table 1: Subgroups of $G_{n,m}$ of index 2

<table>
<thead>
<tr>
<th>τ</th>
<th>$H_{i,2}$</th>
<th>$H'_{i,2}$</th>
<th>$H_{i,2}/H'_{i,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\langle \sigma, \tau \rangle$</td>
<td>(1)</td>
<td>$(2^m, 2^{n+1})$</td>
</tr>
<tr>
<td>2</td>
<td>$\langle \sigma, \rho \rangle$</td>
<td>$\langle \sigma^2 \rangle$</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>3</td>
<td>$m = 2$</td>
<td>$\langle \tau, \rho \rangle$</td>
<td>$\langle \rho^2 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$m \geq 3$</td>
<td>$\langle \tau, \rho, \sigma \rangle$</td>
<td>$\langle \rho^2, \sigma^4 \rangle$</td>
</tr>
<tr>
<td>4</td>
<td>$n = 1$ and $m = 2$</td>
<td>$\langle \sigma \tau, \rho \rangle$</td>
<td>$\langle \tau^2 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$n = 2$ and $m = 2$</td>
<td>$\langle \sigma \tau, \rho \rangle$</td>
<td>$\langle \tau^2 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$n = 1$ and $m \geq 3$</td>
<td>$\langle \sigma \tau, \rho \rangle$</td>
<td>$\langle (\sigma \tau)^2 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$n = 2$ and $m \geq 3$</td>
<td>$\langle \sigma \tau, \rho, \sigma \rangle$</td>
<td>$\langle \sigma^2 \rho^2 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$m = 2$</td>
<td>$\langle \sigma \rho, \tau \rangle$</td>
<td>$\langle \rho^4 \rangle$</td>
</tr>
<tr>
<td></td>
<td>$m \geq 3$</td>
<td>$\langle \sigma \rho, \tau, \sigma^2 \rangle$</td>
<td>$\langle \rho^2, \sigma^4 \rangle$</td>
</tr>
<tr>
<td>5</td>
<td>$\langle \tau \rho, \sigma \rangle$</td>
<td>$\langle \sigma^2 \rangle$</td>
<td>(2, 2$^{n+1}$)</td>
</tr>
<tr>
<td>6</td>
<td>$\langle \sigma \rho, \tau \rho \rangle$</td>
<td>$\langle \sigma^2 \rho^2 \rangle$</td>
<td>(4, 2n)</td>
</tr>
</tbody>
</table>

Table 2: Subgroups of $G_{1,n}$ of index 4

<table>
<thead>
<tr>
<th>τ</th>
<th>$H_{i,4}$</th>
<th>$H'_{i,4}$</th>
<th>$H_{i,4}/H'_{i,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\langle \sigma, \tau \rangle$</td>
<td>(1)</td>
<td>(2, 2n)</td>
</tr>
<tr>
<td>2</td>
<td>$\langle \tau, \rho \rangle$</td>
<td>$\langle \sigma^2 \rangle$</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>3</td>
<td>$\langle \rho, \sigma \rangle$</td>
<td>$\langle \sigma \rangle$</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>4</td>
<td>$\langle \sigma \tau, \tau \rangle$</td>
<td>(1)</td>
<td>(2, 2n)</td>
</tr>
<tr>
<td>5</td>
<td>$\langle \sigma \rho, \tau \rangle$</td>
<td>$\langle \sigma \rangle$</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>6</td>
<td>$\langle \tau \rho, \sigma \rangle$</td>
<td>$\langle \sigma \rangle$</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>7</td>
<td>$\langle \sigma \tau \rho, \sigma \rangle$</td>
<td>$\langle \sigma \rangle$</td>
<td>(2, 4)</td>
</tr>
</tbody>
</table>

4. $(\sigma \rho)^2 = \rho^2$ and $(\sigma \tau \rho)^2 = (\tau \rho)^2 = \tau^2$.

5. $[\rho, \sigma \tau] = \rho^2 \sigma^2$.

6. $[\rho, \tau^2] = 1$ and for all $r \in \mathbb{N}$, $[\rho, \sigma^{2^r}] = \sigma^{2^{r+1}}$.

Proof: 1., 2., and 3. are obvious, since $\rho^2 = \tau^{2^m} \sigma^{2^n-1}$, $[\rho, \sigma] = \sigma^2$ and $[\rho, \tau] = \rho^2$.

4. $(\sigma \rho)^2 = \sigma \rho \sigma \rho = \sigma \rho^2 \rho^{-1} \sigma \rho = \sigma \rho \sigma^{-1} = \rho^2$.

$(\sigma \tau \rho)^2 = \sigma \tau \rho \sigma \tau \rho = \sigma \tau^2 \rho^{-1} \rho \sigma \rho = \sigma \tau^2 \rho^{-1} \sigma \rho = \sigma \tau \rho \sigma^{-1} = \tau^2$. We proceed similarly to prove the remaining result.

5. Obvious by Lemma 2.1.

6. $[\rho, \tau^2] = \rho^{-1} \tau^{-2} \rho \tau^2 = \rho^{-1} \tau^{-1} \tau^{-1} \rho \tau \tau = \rho^{-1} \tau^{-1} \rho^3 \tau = \rho^{-1} \rho^2 \tau^{-1} \rho \tau = \rho^4 = 1$.

As $[\rho, \tau] = \tau^2$, so $[\rho, \tau^2] = \tau^4$. By induction, we show that for all $r \in \mathbb{N}^*$, $[\rho, \sigma^{2^r}] = \sigma^{2^{r+1}}$.

Let us now prove some entries of the Tables, using Lemmas 2.1 and 2.2.
• For $H_{1,2} = \langle \sigma, \tau, G'_{n,m} \rangle = \langle \sigma, \tau \rangle$, we have $H'_{1,2} = \langle 1 \rangle$, since $[\sigma, \tau] = 1$. As $\sigma^{2^m} = \tau^{2^{m+1}} = 1$, so $H_{1,2}/H'_{1,2} \simeq (2^m, 2^{n+1})$.

• For $H_{2,2} = \langle \sigma, \rho, G'_{n,m} \rangle = \langle \sigma, \rho, \tau^{2^n}, \sigma^2 \rangle = \langle \sigma, \rho, \tau^{2^n} \rangle$. As $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, so $H_{2,2} = \langle \sigma, \rho \rangle$. Therefore, by Lemma 2.2, we get $H'_{2,2} = \langle \sigma^2 \rangle$, thus $H_{2,2}/H'_{2,2} \simeq (2, 4)$, since $\rho^4 = 1$.

• For $H_{4,2} = \langle \sigma \tau, \rho, G'_{n,m} \rangle = \langle \sigma \tau, \rho, \tau^{2^n}, \sigma^2 \rangle = \langle \sigma \tau, \rho, \sigma^2 \rangle = \langle \sigma \tau, \rho, \tau^2 \rangle$, since $\tau^2 = (\sigma \tau)^2 \sigma^{-2}$. We get
 - If $n = 1$ and $m = 2$, then $\rho^2 = \tau^2 \sigma^2$ and $\tau^4 = \sigma^4 = 1$. Lemma 2.2 yields that $H'_{4,2} = \langle \tau^2 \rangle$. Thus $H_{4,2}/H'_{4,2} \simeq (2, 4)$ since $\rho^4 = 1$.
 - If $n \geq 2$ and $m = 2$, then $\rho^2 = \tau^2 \sigma^2$ and $\sigma^4 = 1$, thus $\rho^2 = (\sigma \tau)^2 \sigma^2$; which implies that $\rho^2 (\sigma \tau)^{-2} \sigma^2 = \sigma^2$. Hence $H_{4,2} = \langle \sigma \tau, \rho \rangle$, and Lemma 2.2 yields that $H'_{4,2} = \langle \rho \sigma^2 \rangle$. Thus $H_{4,2}/H'_{4,2} \simeq (4, 2^n)$. If $n = 1$, then $\rho^2 = (\sigma \tau)^2 \sigma^2$; hence $H_{4,2}/H'_{4,2} \simeq (2, 2^{n+1}) = (2, 2^m)$. If $n \neq m - 1$, then $H_{4,2}/H'_{4,2} \simeq (4, 2^{\max(n+1,m)})$.

The other entries of the Tables 1 and 2 are similarly checked.

Proposition 2.3. Let $G_{n,m}$ be the group family defined by Formula (1.1), then

1. The order of $G_{n,m}$ is 2^{m+n+2} and that of $G'_{n,m}$ is 2^m.

2. The coclass of $G_{n,m}$ is $n + 2$ and its nilpotency class is m.

3. The center, $Z(G)$, of G is of type $(2, 2^m)$.

Proof:

1. Since $\sigma^{2^m} = \tau^{2^{m+1}} = 1$ and for all $0 \leq i \leq m - 1$ and $0 \leq j \leq 1$ $\sigma^{2^i} \neq \tau^{2^j}$, then $\langle \sigma, \tau \rangle \simeq (2^m, 2^{n+1})$. Moreover, as $\rho^2 = \tau^{2^n} \sigma^{2^{m-1}}$, so $\langle \sigma, \tau, \rho \rangle \simeq (2^m, 2^{n+1}, 2)$.

2. The lower central series of $G_{n,m}$ is defined inductively by $\gamma_1(G_{n,m}) = G_{n,m}$ and $\gamma_{i+1}(G_{n,m}) = [\gamma_i(G_{n,m}), G_{n,m}]$, that is the subgroup of $G_{n,m}$ generated by the
set \{[a, b] = a^{-1}b^{-1}ab \mid a \in \gamma_i(G_{n,m}), b \in G_{n,m}\}, so the coclass of \(G_{n,m}\) is defined to be \(cc(G_{n,m}) = h - c\), where \(|G_{n,m}| = 2^h\) and \(c = c(G_{n,m})\) is the nilpotency class of \(G_{n,m}\). We easily get
\[
\begin{align*}
\gamma_1(G_{n,m}) &= G_{n,m}, \\
\gamma_2(G_{n,m}) &= G_{n,m} = \langle \sigma^2, \rho^2 \rangle = \langle \sigma^2, \tau^2 \rangle. \\
\gamma_3(G_{n,m}) &= [G', G_{n,m}] = \langle \sigma^4 \rangle \text{ since } [\rho, \tau^2] = 1.
\end{align*}
\]

Then Lemma 2.2(6) yields that for \(j \geq 2\), \(\gamma_{j+1}(G_{n,m}) = [\gamma_j(G_{n,m}), G_{n,m}] = \langle \sigma^{2^j} \rangle\).

Hence \(\gamma_{m+1}(G_{n,m}) = \langle \sigma^{2^m} \rangle = \langle 1 \rangle\) and \(\gamma_m(G_{n,m}) = \langle \sigma^{2^{m-1}} \rangle \neq \langle 1 \rangle\), so \(c(G_{n,m}) = m\). Since \(|G_{n,m}| = 2^{m+n+2}\), then
\[
cc(G_{n,m}) = m + n + 2 - m = n + 2.
\]

3. To prove the last assertion, we use Lemma 12.12 of [13, pp. 204] which states that if \(G\) is a p-group and \(A\) is a normal abelian subgroup of \(G\) such that \(G/A\) is cyclic, then \(A/A \cap Z(G) \cong G'\). Let \(A = H_{1.2}\), so \(A\) is abelian and \([G : A] = 2\), thus \(Z(G) \subseteq A\) and \(A/Z(G) \cong G'\). Hence \(|G| = |A||G : A| = 2|G'||Z(G)|\), thus \(|Z(G)| = \frac{1}{2}|G/G'| = 2^{n+1}\). On the other hand, by Lemma 2.2 we have \([\rho, \sigma^{2^{m-1}}] = \sigma^{2^m} = 1\) and \([\rho, \tau^2] = 1\), so \(\langle \sigma^{2^{m-1}}, \tau^2 \rangle \subseteq Z(G)\). As \(|\langle \sigma^{2^{m-1}}, \tau^2 \rangle| = 2^{n+1}\), so \(\langle \sigma^{2^{m-1}}, \tau^2 \rangle = Z(G) \cong \langle 2, 2^n \rangle\).

We continue with the following results.

Proposition 2.4 ([14]). Let \(H\) be a normal subgroup of a group \(G\). For \(g \in G\), put \(f = [\langle g \rangle.H : H]\) and let \(\{x_1, x_2, \ldots, x_t\}\) be a set of representatives of \(G/\langle g \rangle.H\). The transfer map \(V_{G \to H} : G/G' \to H/H'\) is given by the following formula
\[
V_{G \to H}(gG') = \prod_{i=1}^{t} x_i^{-1}g^i x_i.H'.
\]

Easily, we prove the following corollaries.

Corollary 2.5. Let \(H\) be a subgroup of \(G_{n,m}\) of index 2. If \(G_{n,m}/H = \{1, zH\}\), then
\[
V_{G \to H}(gG_{n,m}) = \begin{cases}
gz^{-1}gz.H' = g^2[g, z].H' & \text{if } g \in H, \\
g^2.H' & \text{if } g \notin H. \end{cases}
\]

Corollary 2.6. Let \(H\) be a normal subgroup of \(G_{n,m}\) of index 4. If \(G_{n,m}/H = \{1, zH, z^2H, z^3H\}\), then
\[
V_{G \to H}(gG_{n,m}) = \begin{cases}
gz^{-1}gz^{-1}gz^{-1}.H' & \text{if } g \in H, \\
g^4.H' & \text{if } g.H = zH, \\
g^2z^{-1}g^2z.H' & \text{if } g \notin H \text{ and } g.H \neq zH. \end{cases}
\]

Corollary 2.7. Let \(H\) be a normal subgroup of \(G_{n,m}\) of index 4. If \(G_{n,m}/H = \{1, z_1H, z_2H, z_3H\}\) with \(z_3 = z_1z_2\), then
\[
V_{G \to H}(gG_{n,m}) = \begin{cases}
 gz_1^{-1}gz_1^{-1}gz_1^{-1}g^{-1}gz_1z_2.H' & \text{if } g \in H, \\
g^2z_1^{-1}g^2z_1.H' & \text{if } g.H = z_3H \text{ with } i \neq j. \end{cases}
\]
We can now establish our main result. Let \(\ker V_H \) denote the kernel of the transfer map \(V_{G_{n,m}}: G_{n,m}/G_{n,m}' \to H/H' \), where \(H \) is a subgroup of \(G_{n,m} \).

Theorem 2.8. Keep the previous notations. Then

1. \(\ker V_{H_{1,2}} = \langle \sigma G_{n,m} \rangle \).
2. \(\ker V_{H_{2,2}} = \langle \sigma G_{n,m}', \rho G_{n,m} \rangle \).
3. \(\ker V_{H_{3,2}} = \begin{cases} \langle \tau \rho G_{n,m}, \sigma G_{n,m}' \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle \tau G_{n,m}, \sigma G_{n,m}' \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle \sigma G_{n,m}' \rangle & \text{otherwise} . \end{cases} \)
4. \(\ker V_{H_{4,2}} = \begin{cases} \langle \tau G_{n,m}, \rho G_{n,m}' \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle \sigma G_{n,m}', \sigma G_{n,m} \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle \rho G_{n,m}' \rangle & \text{otherwise} . \end{cases} \)
5. \(\ker V_{H_{5,2}} = \begin{cases} \langle \rho G_{n,m}', \tau G_{n,m}' \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle \rho G_{n,m}', \tau G_{n,m} \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle \rho G_{n,m}' \rangle & \text{otherwise} . \end{cases} \)
6. \(\ker V_{H_{6,2}} = \begin{cases} \langle \tau G_{n,m}', \sigma G_{n,m} \rangle & \text{if } n = 1, \\ \langle \sigma G_{n,m} \rangle & \text{if } n \geq 2. \end{cases} \)
7. \(\ker V_{H_{7,2}} = \begin{cases} \langle \sigma G_{n,m}', \tau G_{n,m}' \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle \sigma G_{n,m}', \tau G_{n,m} \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle \sigma G_{n,m}' \rangle & \text{otherwise} . \end{cases} \)
8. If \(n = 1 \), then for all \(1 \leq i \leq 7 \), \(\ker V_{H_{i,4}} = G_{1,m}/G_{1,m}' \).

Proof: We prove only some assertions, the others are similarly shown.

1. We know, from the Table 1, that \(H_{1,2} = \langle \sigma, \tau \rangle \), then \(G_{m,n}/H_{1,2} = \{1, \rho H_{1,2}\} \) and \(H_{1,2} = \langle 1 \rangle \). Hence, by Corollary 2.5 and Lemma 2.2, we get

 * \(V_{G_{m,n} \to H_{1,2}}(\sigma G_{m,n}') = \sigma^2[\sigma, \rho] H_{1,2}' = \sigma^2\sigma^{-2} H_{1,2}' = H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\tau G_{m,n}') = \tau^2[\tau, \rho] H_{1,2}' = \tau^2\rho^{-2} H_{1,2}' = \tau^2\rho^2 H_{1,2}' \neq H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\rho G_{m,n}') = \rho^2 H_{1,2}' \neq H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\sigma \tau G_{m,n}') = (\sigma \tau)^2[\sigma \tau, \rho] H_{1,2}' = (\sigma \tau)^2\sigma^{-2} \rho^2 H_{1,2}' = \tau^2\rho^2 H_{1,2}' \neq H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\sigma^{'} \rho G_{m,n}') = (\sigma^{'})^2[\sigma^{'}, \rho^{'}] H_{1,2}' = \rho^2 H_{1,2}' \neq H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\tau^{'})^2[\tau^{'}, \rho^{'}] H_{1,2}' = \tau^2 H_{1,2}' \neq H_{1,2}' \).
 * \(V_{G_{m,n} \to H_{1,2}}(\sigma \tau \rho G_{m,n}') = (\sigma \tau \rho)^2 H_{1,2}' = \tau^2 H_{1,2}' \neq H_{1,2}' \).
Therefore ker $V_{H,2} = \langle \sigma G^\prime_{m,n} \rangle$.

3. Similarly, from the Table 1, we get $H_{3,2} = \begin{cases} \langle \tau, \rho \rangle & \text{if } m = 2 , \\ \langle \tau, \rho, \sigma^2 \rangle & \text{if } m \geq 3. \end{cases}$ Then

$G_{m,n}/H_{3,2} = \{ 1, \sigma H_{3,2} \}$ and $H'_{3,2} = \begin{cases} \langle \rho^2 \rangle = \langle (\sigma \tau)^2 \rangle & \text{if } m = 2 \text{ and } n = 1 , \\ \langle \rho^2 \rangle = \langle \sigma^2 \tau^2 \rangle & \text{if } m = 2 \text{ and } n \geq 2 , \\ \langle \rho^2, \sigma^4 \rangle = \langle \sigma^4, \tau^2 \rangle & \text{if } m \geq 3 \text{ and } n = 1 , \\ \langle \rho^2, \sigma^4 \rangle = \langle \sigma^4, \tau^2 \rangle & \text{if } m \geq 3 \text{ and } n \geq 2. \end{cases}$

Hence, by Corollary 2.5 and Lemma 2.2, we get

1st case: $m = 2$.

- $V_{G_{m,n}, H_{3,2}}(\sigma G^\prime_{m,n}) = \sigma^2 H'_{3,2} \neq H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\tau G^\prime_{m,n}) = \tau^2 = H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\rho G^\prime_{m,n}) = \rho^2 = H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\sigma \rho G^\prime_{m,n}) = \sigma^2 \tau \rho H'_{3,2} \neq H'_{3,2}$.

Therefore ker $V_{H_{3,2}} = \begin{cases} \langle \tau \rho G^\prime_{m,n}, \sigma \rho G^\prime_{m,n} \rangle & \text{if } m = 2 \text{ and } n = 1 , \\ \langle \sigma \rho G^\prime_{m,n} \rangle & \text{if } m = 2 \text{ and } n \geq 2. \end{cases}$

2nd case: $m \geq 3$.

- $V_{G_{m,n}, H_{3,2}}(\sigma G^\prime_{m,n}) = \sigma^2 H'_{3,2} \neq H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\tau G^\prime_{m,n}) = \tau^2 = H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\rho G^\prime_{m,n}) = \rho^2 = H'_{3,2}$.
- $V_{G_{m,n}, H_{3,2}}(\sigma \rho G^\prime_{m,n}) = \sigma^2 \tau \rho H'_{3,2} \neq H'_{3,2}$.

Therefore, ker $V_{H'_{3,2}} = \begin{cases} \langle \sigma \rho G^\prime_{m,n}, \tau G^\prime_{m,n} \rangle & \text{if } m \geq 3 \text{ and } n = 1 , \\ \langle \sigma \rho G^\prime_{m,n} \rangle & \text{if } m \geq 3 \text{ and } n \geq 2. \end{cases}$

8. We know, from the Table 2, that $H_{1,4} = \langle \sigma, \tau^2 \rangle$, then $G_{n,m}/H_{1,4} = \{ 1, \tau H_{1,4}, \rho H_{1,4}, \tau \rho H_{1,4} \}$ and $H'_{1,4} = \{ 1 \}$. Hence Corollary 2.7 and Lemma 2.2 yield that

- $V_{G_{n,m}, H_{1,4}}(\sigma G^\prime_{m,n}) = \sigma^2 \rho H'_{1,4} = \sigma^2 \rho^2 H'_{1,4} = H'_{1,4}$.
- $V_{G_{n,m}, H_{1,4}}(\tau G^\prime_{m,n}) = \tau^2 \rho^2 = \tau^2 \rho H'_{1,4} = \tau^4 H'_{1,4} = H'_{1,4}$.
- $V_{G_{n,m}, H_{1,4}}(\rho G^\prime_{m,n}) = \rho^2 \tau = \rho^2 \tau H'_{1,4} = \rho^4 \rho^2 H'_{1,4} = H'_{1,4}$.

Therefore, ker $V_{H_{1,4}} = \langle \sigma G^\prime_{m,n}, \tau G^\prime_{m,n}, \rho G^\prime_{m,n} \rangle = G_{n,m}/G^\prime_{m,n}$. \(\square\)
3. Applications

Let k be a number field and $C_{k,2}$ be its 2-class group, that is the 2-Sylow subgroup of the ideal class group C_k of k, in the wide sens. Let $k_2^{(1)}$ be the Hilbert 2-class field of k in the wide sens. Then the Hilbert 2-class field tower of k is defined inductively by: $k_2^{(0)} = k$ and $k_2^{(2^j)} = (k_2^{(2^{j-1})})^{2^i}$, where i is a positive integer. Let M be an unramified extension of k and $C_{k,M}$ be the subgroup of C_k associated to the class of an ideal A of k the class of the ideal generated by A in M, and by $N_{M/k}$ the norm of the extension M/k.

Throughout all this section, assume that $\text{Gal}(k_2^{(2)}/k) \cong G_{n,m}$. Hence, according to Class Field Theory, $C_{k,2} \cong G_{n,m}/G'_{n,m} \cong (2, 2, 2^n)$, thus $C_{k,2} = \langle a, b, c \rangle \cong \langle \sigma_{G_{n,m}}, \tau_{G_{n,m}}, \rho_{G_{n,m}} \rangle$, where $\langle a, k_2^{(2)}/k \rangle = \sigma_{G_{n,m}}$, $\langle b, k_2^{(2)}/k \rangle = \tau_{G_{n,m}}$ and $(c, k_2^{(2)}/k) = \rho_{G_{n,m}}$, with $(\ldots, k_2^{(2)}/k)$ denotes the Artin symbol in $k_2^{(2)}/k$.

It is well known that each subgroup $H_{i,j}$, where $1 \leq i \leq 7$ and $j = 2$ or 4, of $C_{k,2}$ is associated, by class field theory, to a unique unramified extension $K_{i,j}$ of $k_2^{(1)}$ such that $H_{i,j}/H_{i,j}' \cong C_{k_{i,j},2}$.

Our goal is to study the capitulation problem of the 2-ideal classes of k in its unramified quadratic extensions $K_{i,2}$ and in its unramified biquadratic extensions $K_{i,4}$ if $n = 1$. By Class Field Theory, the kernel of $j_{k\rightarrow M}$, $\ker j_{k\rightarrow M}$, is determined by the kernel of the transfer map $V_{G\rightarrow H} : G/G' \rightarrow H/H'$, where $G = \text{Gal}(k_2^{(2)}/k)$ and $H = \text{Gal}(k_2^{(2)}/M)$.

Theorem 3.1. Keep the previous notations.

1. $\ker j_{k\rightarrow K_{1,2}} = \langle a \rangle$.
2. $\ker j_{k\rightarrow K_{2,2}} = \langle a, c \rangle$
3. $\ker j_{k\rightarrow K_{3,2}} = \langle b, c \rangle$ if $m = 2$ and $n = 1$,
 $\langle b, ac \rangle$ if $m \geq 3$ and $n = 1$,
 $\langle ac \rangle$ otherwise.
4. $\ker j_{k\rightarrow K_{4,2}} = \langle b, c \rangle$ if $m = 2$ and $n = 1$,
 $\langle ab, c \rangle$ if $m \geq 3$ and $n = 1$,
 $\langle c \rangle$ otherwise.
5. $\ker j_{k\rightarrow K_{5,2}} = \langle c, ab \rangle$ if $m = 2$ and $n = 1$,
 $\langle c, b \rangle$ if $m \geq 3$ and $n = 1$,
 $\langle c \rangle$ otherwise.
6. $\ker j_{k\rightarrow K_{6,2}} = \langle b, c \rangle$ if $n = 1$,
 $\langle ac \rangle$ if $n \geq 2$.
7. $\ker j_{k\rightarrow K_{7,2}} = \langle ac, b \rangle$ if $m = 2$ and $n = 1$,
 $\langle ac, bc \rangle$ if $m \geq 3$ and $n = 1$,
 $\langle ac \rangle$ otherwise.
8. If \(n = 1 \), then for all \(1 \leq i \leq 7 \), \(\ker j_{k \to K_{i,4}} = C_{k,2} \).

9. The \(2 \)-class group of \(k^{(2)}_2 \) is of type \((2, 2^{m-1}) \).

10. The Hilbert \(2 \)-class field tower of \(k \) stops at \(k^{(2)}_2 \).

Proof: According to the Theorem 2.8, we have

1. Since \(\ker V_{H_{1,2}} = \langle \sigma G'_{n,m} \rangle \), so \(\ker j_{k \to K_{1,2}} = \langle a \rangle \).

2. As \(\ker V_{H_{2,2}} = \langle \sigma G'_{n,m}, \rho G'_{n,m} \rangle \), \(j_{k \to K_{2,2}} = \langle a, c \rangle \).

3. Similarly, as \(\ker V_{H_{3,2}} = \begin{cases} \langle \tau p G'_{n,m}, \sigma G'_{n,m} \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle \tau G'_{n,m}, \sigma G'_{n,m} \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle \sigma G'_{n,m} \rangle & \text{otherwise} \end{cases} \).

Then \(\ker j_{k \to K_{3,2}} = \begin{cases} \langle bc, ac \rangle & \text{if } m = 2 \text{ and } n = 1, \\ \langle bc, ac \rangle & \text{if } m \geq 3 \text{ and } n = 1, \\ \langle ac \rangle & \text{otherwise} \end{cases} \).

The other assertions are similarly proved.

8. It is well known, by class field theory, that \(C_{K^{(1)},2} \simeq G_{n,m}^{(1)} \), where \(C_{k^{(1)},2} \) is the \(2 \)-class group of \(k^{(1)}_2 \). As \(G_{n,m}^{(1)} = \langle 2^d, \tau^{2^n} \rangle \simeq (2, 2^{m-1}) \), since \(\sigma^{2n} = \tau^4 = 1 \). So the result.

9. For every \(n \geq 1 \), we have \(H_{1,4} = \langle \sigma, G'_{n,m} \rangle = \langle \sigma, \tau^{2^n} \rangle \simeq (2, 2^n) \), \(H_{2,4} = \langle \tau, \sigma^2 \rangle \simeq (2^n, 2^{m-1}) \) and \(H_{3,4} = \langle \sigma, G'_{n,m} \rangle = \langle \sigma, \tau^{2^n} \rangle \simeq (2^{\min(m-1, n)}, 2^{\max(m, n+1)}) \) are the three subgroups of index 2 of the group \(H_{1,2} \), then \(K_{1,4}, K_{2,4} \) and \(K_{3,4} \) are the three unramified quadratic extensions of \(K_{1,2} \). On the other hand, the 2-class groups of these fields are of rank 2, since, by Class Field Theory, \(C_{K_{i,j},2} \simeq H_{i,j}/H_{i,j} \) with \(i = 1, 2 \) or 4 and \(j = 2 \) or 4. Thus \(C_{K_{i,j},2} \simeq (2^n, 2) \) and \(C_{K_{2,2}} \simeq (2^n, 2^{n+1}) \). Hence \(h_2(K_{2,4}) = \frac{h_2(K_{2,4})}{2} \), where \(h_2(K) \) denotes the 2-class number of the field \(K \). Therefore, we can apply Proposition 7 of [8], which says that \(K_{1,2} \) has an abelian 2-class field tower if and only if it has a quadratic unramified extension \(K_{2,4}/K_{1,2} \) such that \(h_2(K_{2,4}) = \frac{h_2(K_{1,2})}{2} \). Thus \(K_{1,2} \) has abelian 2-class field tower which terminates at the first stage; this implies that the 2-class field tower of \(k \) terminates at \(k^{(2)}_2 \), since \(k \subset K_{1,2} \). Moreover, we know, from Proposition 2.3, that \(|G_{n,m}| = 2^{m+n+2} \) and \(|G'_{n,m}| = 2^m \), hence \(k^{(1)}_2 \neq k^{(2)}_2 \).

\[\square \]

4. Example

Let \(k = \mathbb{Q}(\sqrt{d}) \) be an imaginary quadratic number field with discriminant \(d = -4pqq' \), where \(p \equiv 5 \mod 8 \), \(q \equiv 3 \mod 8 \) and \(q' \equiv 7 \mod 8 \) are primes such that \(\left(\frac{q}{p} \right) = \left(\frac{q'}{p} \right) = -1 \). Let \(k^{(1)}_2 \) be the Hilbert 2-class field of \(k \), \(k^{(2)}_2 \) its second Hilbert 2-class field and \(G \) be the Galois group of \(k^{(2)}_2/k \). According to [10], \(k \) has an elementary abelian 2-class group \(C_{k,2} \) of rank 3, that is of type \((2, 2, 2) \). Denote by \(h_2(-qq') \) the 2-class number of \(\mathbb{Q}(\sqrt{-qq'}) \), then by [15,10] \(h_2(-qq') = 2^m \) and the 2-class group of \(\mathbb{Q}(\sqrt{-qq'}) \) is of type \((2, 2^{m-1}) \) with \(m \geq 2 \). By [10, Theorem 1], we have \(G \simeq G_{1,m} \). As \(C_{k,2} \simeq (2, 2, 2) \), then \(k \) has seven unramified quadratic
extensions and seven unramified biquadratic extensions within his first Hilbert 2-class field $k_2^{(1)}$. For more details about the results given in this section and about the following theorem the reader can see [10]. This theorem is given here to illustrate the results shown in the above sections.

Theorem 4.1. Let $k = \mathbb{Q}(\sqrt{d})$ be an imaginary quadratic number field with discriminant $d = -4pqq'$, where $p \equiv 5 \mod 8$, $q \equiv 3 \mod 8$ and $q' \equiv 7 \mod 8$ are primes such that $\left(\frac{d}{p}\right) = \left(\frac{d}{q}\right) = -1$. k has fourteen unramified extensions within his first Hilbert 2-class field, $k_2^{(1)}$. Denote by $C_{k,2}$ the 2-class group of k. Then the following assertions hold.

1. $C_{k,2}$ is of type $(2, 2, 2)$.
2. Exactly four elements of $C_{k,2}$ capitulate in each unramified quadratic extension of k except one where only 2 classes capitulate.
3. All the 2-classes of k capitulate in each unramified biquadratic extension of k.
4. The Hilbert 2-class field tower of k stops at $k_2^{(2)}$.
5. $C_{k_2^{(1)},2} \simeq (2, 2^{m-1})$.
6. The coclass of G is 3 and its nilpotency class is m.
7. The 2-class groups of the unramified quadratic extensions of k are of types $(2, 4)$, $(2, 2, 2)$ or $(4, 2^m)$.
8. The 2-class groups of the unramified biquadratic extensions of k are of types $(2, 4)$, $(2, 2^m)$ or $(4, 2^{m-1})$.

Acknowledgments

We thank the referees for their suggestions and comments.

References

1. A. Azizi, A. Zekhnini and M. Taous, Coclass of $\text{Gal}(k_2^{(2)}/k)$ for some fields $k = \mathbb{Q}\left(\sqrt{\frac{p_1p_2}{q}}, \sqrt{-1}\right)$ with 2-class groups of type $(2, 2, 2)$, to appear in J. Algebra Appl, (2015). DOI: 10.1142/S0219498816500274.

2. A. Azizi, A. Zekhnini and M. Taous, Structure of $\text{Gal}(k_2^{(2)}/k)$ for some fields $k = \mathbb{Q}(\sqrt{-pq}, i)$ with $\text{Cl}_2(k) \simeq (2, 2, 2)$, Abh. Math. Sem. Univ. Hamburg, Volume 84, 2 (2014), 203-231.

4. A. Azizi, A. Zekhnini and M. Taous, On some metabelian 2-group whose abelianization is of type $(2, 2, 2)$ and applications, J. Taibah Univ. Sci. (2015), http://dx.doi.org/10.1016/j.jtusci.2015.01.007.

6. A. Azizi, M. Taous and A. Zekhnini, *On the 2-groups whose abelianizations are of type (2, 4) and applications*, to appear in Publicationes Mathematicae Debrecen.

Abdelmalek Azizi and Abdelkader Zekhnini,
Department of Mathematics, Faculty of Sciences,
Mohammed First University, Oujda, Morocco.
Mohammed Taous, Department of Mathematics, Faculty of Sciences and Technology,
Moulay Ismail University, Errachidia, Morocco.
E-mail address: abdelmalekazizi@yahoo.fr
E-mail address: zekha1@yahoo.fr
E-mail address: taousm@hotmail.com